A Quantitative Comparison Between MOGAs and the RRT Algorithm on Classification Systems Optimization

نویسندگان

  • Paulo V. W. Radtke
  • Robert Sabourin
  • Tony wong
چکیده

Genetic algorithms are powerful population based optimization methods. Their multi-objective counterparts have been often used to effectively optimize classification systems, but little is discussed on their computational cost to solve such problems. To better understand this issue, an annealing based approach to optimize a classification system is proposed and discussed. Results are then compared to results obtained with a multi-objective genetic algorithm in the same problem. The experiments performed with isolated handwritten digits demonstrate both the effectiveness and lower computational cost of the annealing based approach. Resumo. Algoritmos genéticos são métodos de otimização baseados em população. Seus equivalentes multi-critério são usados freqüentemente na otimização de sistemas de classificação, mas pouco se discute sobre o custo computacional ao solucionar tais problemas. Para entender melhor esta relação, é proposta a utilização de uma abordagem baseada em simulated annealing. Os resultados são comparados com os obtidos por algoritmos genéticos multi-critério no mesmo problema. Os experimentos com dı́gitos manuscritos isolados indicam a eficácia e baixo custo computacional da abordagem baseada em simulated annealing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Optimization K-Modes Clustering Algorithm with Elephant Herding Optimization Algorithm for Crime Clustering

The detection and prevention of crime, in the past few decades, required several years of research and analysis. However, today, thanks to smart systems based on data mining techniques, it is possible to detect and prevent crime in a considerably less time. Classification and clustering-based smart techniques can classify and cluster the crime-related samples. The most important factor in the c...

متن کامل

S3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization

Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...

متن کامل

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

Classification of polarimetric radar images based on SVM and BGSA

Classification of land cover is one of the most important applications of radar polarimetry images. The purpose of image classification is to classify image pixels into different classes based on vector properties of the extractor. Radar imaging systems provide useful information about ground cover by using a wide range of electromagnetic waves to image the Earthchr('39')s surface. The purpose ...

متن کامل

A quantitative model for evaluation and classification of blastings in open-pit mines

By evaluation of the blasting results, a proper blast pattern can be presented. It is, therefore, essential to employ a reliable method to evaluate blastings for the effective control and optimization of the main cycle operations. This paper aims to propose a criterion for evaluating the blasting results such as the fragmentation, muckpile condition, back-break, and fly rock, and to make a poss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007